Ответы к экзаменам и зачётам

Ответы к экзамену: Методика математического развития дошкольников - Современные концепции и методические системы математического развития дошкольников

Страница 4 из 25

Современные концепции и методические системы математического развития дошкольников, вариативные программы "Радуга", "Развитие", "Детство", методические системы М. Монтессори, Н.А. Зайцева, Е.К. Шулешко, Н.В. Белошистой.

Современное состояние теории и технологии развития математических представлений у детей дошкольного возрастасложилось в 80—90-е гг. XX вв. и первые годы нового столетия под влияниемразвития идей обучения детей математике. а такжереорганизации всей системы образования.

Уже в 80-е гг. начали обсуждатьсяпути совершенствования как содержания.так и методов обучения детей дошкольного возрастаматематике.

В качественегативного момента отмечалась ориентировка на выработку у детей предметных действий. в основномсвязанных со счетом и простейшими вычислениями.без должного уровня их обобщенности. Такой подход не обеспечивал подготовку к усвоению математических понятий в дальнейшем обучении.

Специалистывыясняли возможности интенсификации и оптимизации обучения. способствующие общему и математическому развитию ребенка, отмечали необходимость повышения теоретического уровня осваиваемых детьми знаний. Этотребовало реконструкции программы обучения. в том числе переосмысления системы представлений, последовательности их формирования.

Начались интенсивные поиски путей обогащения содержания обучения.Решение этих сложных проблем осуществлялось по-разному.

Психологи в качестве основания для формирования начальных математических представлений и понятий предлагали различныепредметные действия.

П.Я. Гальперин разработаллинию формирования начальных математических понятий и действий, построеннуюна введении мерки и определении единицы через отношение к мерке. Число при таком подходе воспринимается ребенком как результат измерения, как отношение измеряемой величины к избранной мерке. На основе этих и других исследований в программу обучения детей была включена тема «Освоение величин».

В исследовании В.В. Давыдова был раскрытпсихологический механизм счета как умственной деятельности и намеченыпути формирования понятия числа через освоение детьмидействий уравнивания, комплектования и измерения. Генезис понятия числа рассматривался на основе кратного отношения любой величины (непрерывной и дискретной) к ее части.

В отличие от традиционной методики ознакомления с числом (число — результат счета)новым явилсяспособ введения самого понятия: число как отношение измеряемой величины к единице измерения (условная мерка), т. е. число — результат измерения.

Анализ содержания обучения дошкольников с точки зрения новых задач привел исследователейк выводу о необходимости учить детей обобщенным способам решения познавательных задач,усвоению связей, зависимостей.отношений илогических операций (классификации и сериации).

Для этого предлагались исвоеобразные средства. модели, схематические рисунки и изображения, отражающие наиболее существенное в познаваемом содержании.

Математики-методисты (А. И. Маркушевич, Ж. Папи и др.) настаивали на значительном пересмотре содержания знаний для детей 6-летнего возраста, насыщении его некоторыминовыми представлениями, относящимися к множествам, комбинаторике, графам, вероятности и т. д.

Идеи простейшей предлогической подготовки дошкольников разрабатывались в Могилевском педагогическом институте под руководством А. А. Столяра. Методикавведения детей в мир логико-математических представлений — свойства, отношения, множества, операции над множествами, логические операции (отрицание, конъюнкция, дизъюнкция) — осуществлялась с помощью специальной серии обучающих игр.

В педагогических исследованиях выяснялись возможности развития у детейпредставлений о величине, установления взаимосвязей между счетом и измерением ; апробировались приемы обучения (Р. Л. Березина, Н. Г. Белоус, 3. Е. Лебедева, Р. Л. Непомнящая, Е. В. Проскура, Л. А. Левинова, Т. В. Тарунтаева, Е. И. Щербакова).

Возможностиформирования количественных представлений у детей раннего возраста и пути их совершенствования у детей дошкольного возраста изучены В.В.Даниловой, Л.И.Ермолаевой, Е. А. Тархановой.

Содержание и приемы освоенияпространственно-временных отношений определены на основе исследований Т. А. Мусейибовой, К. В. Назаренко, Т. Д. Рихтерман и др.

Методы и приемы математического развития детейс помощью игры были разработаны З.А.Грачевой (Михайловой), Т. Н. Игнатовой, А. А. Смоленцевой, И. И. Щербининой и др.

Исследовались возможности использованиянаглядного моделирования в процессе обучения решению арифметических задач (Н. И. Непомнящая), познания детьми количественных и функциональных зависимостей (Л. Н. Бондаренко, Р. Л. Непомнящая, А. И. Кириллова), способности дошкольников к наглядному моделированию при освоении пространственных отношений (Р. И. Говорова, О. М. Дьяченко, Т. В. Лаврентьева, Л. М. Хализева).

Комплексный подход в обучении, эффективные дидактические средства, обогащенное содержание и разнообразные приемы обучения нашли отражениев конспектах занятий по формированию математических представлений и методических рекомендациях по их использованию, разработанных Л. С. Метлиной.

Поиск путей совершенствования методики обучения математике детей дошкольного возраста осуществлялся и в других странах.

В начале 90-х гг. XX в. наметилосьнесколько основных научных направлений в теории и методике развития математических представлений у детей дошкольного возраста.

Согласно первому направлению. содержание обучения и развития, методы и приемы конструировались на основеидеи преимущественного развития у детей дошкольного возрастаинтеллектуально-творческих способностей (Ж. Пиаже, Д. Б. Эльконин, В. В. Давыдов, Н. Н. Поддьяков, А. А. Столяр и др.):

- наблюдательность, познавательные интересы;

- исследовательский подход к явлениям и объектам окружения (умения устанавливать связи, выявлять зависимости, делать выводы);

- умение сравнивать, классифицировать, обобщать;

- прогнозирование изменений в деятельности и результатах;

- ясное и точное выражение мысли;

- осуществление действия в виде «умственного эксперимента» (В. В. Давыдов и др.).

Предполагалисьактивные методы и приемы обучения и развития детей, такие какмоделирование.действия трансформации (перемещение, удаление и возвращение, комбинирование), игра и другие.

Способность к наглядному моделированию выступает какодна из общих интеллектуальных способностей. Дети овладеваютдействиями с тремя видами моделей (модельных представлений):конкретными ;обобщенными. отражающими общую структуру класса объектов;условно-символическими. передающими скрытые от непосредственного восприятия связи и отношения.

Второе положение базировалосьна преимущественном развитии у детей сенсорных процессов и способностей (А. В. Запорожец, Л. А. Венгер, Н. Б. Венгер и др.):

- включение ребенка в активный процесс по выделению свойств объектов путем обследования, сравнения, результативного практического действия;

- самостоятельное и осознанное использование сенсорных эталонов и эталонов мер в деятельности использование моделирования («прочтения» моделей и действий моделирования).

- При этом овладение перцептивными ориентировочными действиями, которые ведут к усвоению сенсорных эталонов, рассматривается как основа развития у детей сенсорных способностей.

Третье теоретическое положение. на котором базируется математическое развитие детей дошкольного возраста, основанона идеях первоначального (до освоения чисел) овладения детьмиспособами практического сравнения величин черезвыделение в предметах общих признаков — массы, длины, ширины, высоты (П. Я. Гальперин, Л.С.Георгиев, В.В.Давыдов, Г. А. Корнеева, А. М. Леушина и др.). Эта деятельность обеспечивает освоение отношений равенства и неравенства путем сопоставления. Дети овладевают практическими способами выявления отношений по величине, для которых числа не требуются. Числа осваиваются вслед за упражнениями при сравнении величин путем измерения.

Четвертое теоретическое положение основываетсяна идее становления и развития определенного стиля мышления в процессеосвоения детьми свойств и отношений (А. А. Столяр, Р. Ф. Соболевский, Т. М. Чеботаревская, Е. А. Носова и др.).

Умственные действия со свойствами и отношениями рассматриваются как доступное и эффективное средство развития интеллектуально-творческих способностей. В процессе действий с множествами предметов, обладающих разнообразными свойствами (цветом, формой, размером, толщиной и пр.), дети упражняются в абстрагировании свойств и выполнении логических операций над свойствами тех или иных подмножеств. Специально сконструированные игры помогают детям понять точный смысл логических связок и, или, если, то, смысл слов не, все, некоторые.

Теоретические основы современной методики развития математических представлений базируются наинтеграции четырех основных положений. а такжена классических и современных идеях  математического развития детей дошкольного возраста.